
Trusted Watermarks
Andreas Brett∗, Nicolai Kuntze†, Andreas U. Schmidt‡

∗ Department of Computer Science, Technische Universität Darmstadt
Darmstadt, Germany

brett@rbg.tu-darmstadt.de

† Fraunhofer-Institute for Secure Information Technology SIT
Rheinstraße 75, 64295 Darmstadt, Germany

nicolai.kuntze@sit.fraunhofer.de

‡ CREATE-NET Research Center
Via alla Cascata 56/D, 38100 Trento, Italy

andreas.schmidt@create-net.org

Abstract—The Internet becomes more and more integrated
into everyday life these days. Reasons may be increasing data
transfer rates and decreasing connection fees. Increasing data
transfer rates on the client-side cause a widespread usage of peer-
to-peer techniques that balance network load between servers
and clients. Especially when distributing content to a multitude
of customers, usage of peer-to-peer mechanisms comes in handy.
Another main impact of the Internet nowadays is an increasing
appetite for on-demand content which leads to entertainment
devices providing customers with on-demand media from the
Internet in their living rooms.

Furthermore uprising media-deployment results in an aris-
ing demand for theft-protection by the holders of copyrights.
Nevertheless past showed that copyright protection methods that
restrict the user in being able to playback acquired media without
difficulty cause decreasing sales figures. Thus customer-friendly
copyright-protection methods seem to bridge the gap between
customer’s and supplier’s needs.

Moreover one major problem in the growing usage of software
implemented algorithms in embedded systems, like on-demand
entertainment-devices, is the ability of customers to modify their
devices in order to reveal secret data or to bypass copyright-
protection providing methods. Integrity-proving mechanisms that
ensure devices are being unaltered are required accordingly.

This paper presents a concept for a so called Trusted Set-
Top-Box (TSTB) that will make use of peer-to-peer file sharing
mechanisms to provide the customer with real-time and on-
demand video streaming. To protect copyrighted video material
from theft in a customer-friendly manner, novel watermarking-
technology will be used. This allows for unproblematic playback
of acquired media on distinct playback devices. The TSTB is
referenced to be trusted since TPM-Technology will serve as
security anchor, providing methods for attesting the devices’
integrity. Through this unauthorized modification of the device
will be detected.

I. INTRODUCTION

Peer-to-peer (hereinafter referred to as P2P) turned out to
be the most successful content distribution method for larger
amounts of content in the past years since network load is
naturally balanced to every participant. By using P2P there
is no more need for expensive server infrastructures that
provide methods and techniques for network load balancing.

This uprising success of P2P however leads to difficulties
concerning security and customer experiences.

Concerning customer experiences there is no quality of
service that can be guaranteed as P2P performance is tech-
nically unforeseeable so no SLAs can be given. Furthermore
speaking of distributed content, security (particularly integrity
of content) is one major issue as content is not only spread
by content providers but the customers themselves. Content
providers are no longer able to ensure what content appears at
the customer’s side. Using P2P opens the door for customers
taking over parts of the P2P network in order to deploy their
own content instead of the supplier’s one.

As the former problem is to some degree negligible con-
cerning inflating transfer rates and is already addressed by
studies about Quality of Service (QoS) capable P2P strategies,
we will show a way to solve the latter problem by using
modern integrity proving methods. Using TPM-Devices inside
content-distributing devices enables content providers to state
devices to be unaltered and thus trusted. Only data distributed
by trusted devices will be accepted, preventing malicious users
from deploying their own content instead of the providers’.

Another security aspect to be well considered is privacy.
Distributing copyrighted content in a customer-friendly man-
ner leads to marking content with customer-specific data
instead of wrapping it in proprietary formats that can only be
played back on supported devices. Content hence is no longer
bound to a given license that a device needs to verify in order
to allow for decoding the copyrighted material into playable
content. Instead every device is able to playback copyrighted
material without the need of decoding it. Additionally devices
may read and interpret the embedded customer-specific data
for any purpose.

This kind of copyright-protection conflicts with the funda-
mentals of P2P, namely sharing equal content among many
customers, as each customer obtains its personalized content.
Therefore more sophisticated customer-friendly copyright-
protection techniques need to be developed to combine the



advantages of both, copyright-protection and P2P.
We will show how to solve this issue and further shift load

from the server to the client side by transferring unmarked
material via P2P and thereupon embedding watermarks right
on the client’s device. This provides a) customer-bound ma-
terial that is customer-friendly in respect to playability and
privacy, b) compatibility to P2P and c) reduced server load.
Since unmarked media is sent to the customer via P2P, this
vulnerable transmission path has to be strongly secured in
particular. We therefore propose to strongly encrypt unmarked
content before distribution with one unique key for all P2P
participants. Furthermore this key should be cryptographically
bound to the customer’s Set-Top-Box before handing it over.
This is done by utilizing the bind feature provided by TPM-
Devices thus unfolding the key only to the TPM-Device itself.
Additionally watermarks to be embedded into shared media
should be passed to the Set-Top-Boxes in the same manner.

By ensuring system integrity of each device before sharing
data, unmarked content, the encryption key and the water-
mark information securely stay inside the Set-Top-Box that
is only revealing watermarked media to the customer. Devices
detected to be modified in any untrusted way, are banned from
sharing media hence disabling attackers to infiltrate the device
in order to gain access to shared media in an unmarked state.

II. TRUSTED COMPUTING PRINCIPLES

Trusted Computing technology as defined by the Trusted
Computing Group [TCG06] is a technology implementing
consistently behaving computer systems. This consistent be-
havior is enforced by providing methods for reliably checking
a system’s integrity and identifying anomalous and/or un-
wanted characteristics. These methods depict a trusted sys-
tem’s base of trust and thus are implemented in hardware, as
it is less susceptible for attacks than software pendants.

To successfully realize stringently reliable modules, several
cryptographic mechanisms are implemented on a hardware
chip, namely Trusted Platform Module (TPM). This chip in-
corporates strong asymmetric key cryptography, cryptographic
hash functions and a random number generator, that is capable
of producing true random numbers instead of pseudo random
ones. Additionally each trusted system is equipped with a
unique key pair whose private key is securely and irrevocably
stored inside the chip. The chip itself is the only entity to read
and use this key for e.g. signing or encryption. This concept
builds a powerful basement for approving and establishing
system integrity since it allows to truly trustworthy let a trusted
system sign data and to securely encrypt data for one specific
trusted system. This is commonly used to measure system
integrity and to ensure a system is and remains in a predictable
and trustworthy state that produces only accurate results.

A. Trust for Measurement

The key concept of Trusted Computing is the establishing
and extension of trust from an initially trusted security anchor
up to further used components of a system while boot-up. Each
component loaded while booting up the system is measured

before execution by computing a SHA-1 digest value of it.
The first component of this cycle acts as security anchor and
has to be initially trusted, since it’s integrity is not measured.
This anchor is called Core Root of Trust for Measurement
(CRTM) and is implemented as BIOS extension. It is executed
after the very start of a system before any other BIOS
code thus enabling to measure the BIOS and the platform’s
firmware. Each subsequent component involved in the boot-up
process thereupon measures its successive component. Each
measurement is stored in Platform Configuration Registers
(PCR) on the TPM chip. These 160-bit registers are in the
volatile storage on the chip and can exclusively be updated
by calling the TPM command TPM_EXTEND. This command
includes the old value of a register in the calculation of its
new value thus preventing manipulation of registers.

PCRi = SHA-1(PCRi | new value) (1)

This basically implements a non-commutative one-way
function preventing from deleting and/or overwriting digest
values in a PCR and enabling tracking of the chronological
sequence values were applied to the register. This allows to
analyze a system’s state and furthermore prove its integrity
by verifying integrity of any component loaded upon boot-
up. This type of boot-up is also called Trusted Boot Process.
Moreover the successive process of extending trust with each
measure is commonly referenced to build up a Chain of
Trust. To reproduce and verify a platform register’s value in
hindsight, every TPM_EXTEND command executed has to be
tracked in a log. In the case of runtime measurement this has
to be done by the operating system resulting in a log called
Stored Measurement Log (SML). Since PCRs are located in
the volatile storage of the TPM chip, each PCR is initialized
with zeros upon system start and from there on is filled with
measured data.

B. Trust for Reporting

Another main concept of Trusted Computing is Remote
Attestation, a process to prove trustworthiness of a Trusted
Platform to an external party. To verify a platform’s integrity,
a subset of PCRs together with the above-mentioned SML
is sent to the external party. The PCRs values are then re-
calculated using the chronological order of measured compo-
nents logged in the SML and a software implementation of the
TPM_EXTEND command. In order to ensure integrity of the
submitted PCR subset, it is signed by a unique TPM key pair.
This key pair - namely Endorsement Key (EK) - is created
on the chip at manufacture time. It is strictly unmodifiable
and stored in the non-volatile storage on the chip. It is gen-
erated utilizing the TPM_CreateEndorsementKey com-
mand that creates the key pair inside the chip. Due to its speci-
fied uniqueness, once an EK is generated it can’t be overwrit-
ten. Further calls of the TPM_CreateEndorsementKey
command hence fail to ensure each chip holds one unique key
pair. Its private key is furthermore secured from being read
from outside the chip thus representing the so-called Root of



Trust for Reporting (RTR) - another security anchor based on
hardware.

C. Trust for Storage

TPM chips are equipped with several cryptographic modules
providing access to en-/decryption, hashing and key gener-
ation. This allows to securely generate cryptographic keys
inside the TPM. Therefore a RSA key pair generator makes
use of a True Random Number Generator that is capable of
producing true random numbers hence generating true random
RSA key pairs. These are thereupon stored outside the chip in a
shielded storage. This storage is protected using a hierarchical
encryption structure. Each private key of a generated key pair
is encrypted with a parent key. The root of this tree-like key
structure is represented by the last of three security anchors,
the Storage Root Key (SRK). The SRK is a 2048-bit RSA key
pair, that is created on the chip while setting up the TPM for
a new owner. This is done using the TPM_TakeOwnership
command. Like the EK it is unmodifiable and stored in the
non-volatile storage on the chip, restricting the private key
from being read from outside the chip. The SRK represents
the Root of Trust for Storage (RTS) since it is used to securely
store data and other keys outside the chip.

D. AIK Certification

Since each TPM is globally unique and thus identifiable and
traceable, privacy issues arise when attesting a platform’s state
to external parties using Remote Attestation. In order to avoid
this security issue, TPM chips provide for pseudonymity by
allowing to generate temporary keys for attestation. These At-
testation Identity Keys (AIK) can be created at any time using
the TPM_MakeIdentity command and may be certified by
a Trusted Third Party (TTP) to allow external parties to verify,
that an AIK belongs to a TCG conform platform. AIKs can
only be associated to their platform’s EK by the TTP thus pro-
viding the platform with pseudonymity towards other entities.
To issue an AIK credential, the platform has to send the EK-
signed public key of a generated AIK key pair together with
several credentials declaring the platform’s TCG conformance
to the TTP. After successful verification of the AIK and the
platform’s credentials, a particular data structure is sent to the
platform. This structure contains the AIK credential and can
be securely loaded only into the TPM that signed the initial
request using the TPM_ActivateIdentity command.

III. TRUSTED DEMONSTRATION ENVIRONMENT

For the purpose of developing ideas and concepts of Trusted
Computing, we set up a Trusted Demonstration Environment
that was aimed to serve as TC playground that could be
even used on systems lacking of physical TPM presence. This
was realized by combining virtualization and TPM emulation.
Since we were able to inspect debugging messages of the soft-
ware emulated TPM device, emulation furthermore allowed us
to gain deeper insight to TPM functions and to debug a TC
framework we developed for convenient high-level access to
common TPM processes and protocols.

TPM Emulator developed by M. Strasser [Str04] was used
to emulate a TPM device by software. To furthermore replicate
a system being in possession of a TPM even on boot-up, we
decided to virtualize a guest system and pass the emulated
TPM to it. This was done by utilizing a customized instance of
QEMU [Bel08] that was enhanced with the ability of passing
a TPM to the virtualized system.

A. TPM Emulator

To emulate a TPM TPM Emulator 0.5.1 developed by
Mario Strasser at the Swiss Federal Institute of Technology
(ETH) Zurich and documented in [Str04] was used. It is a
software based emulation of a TPM for Unix based systems
implementing almost every function specified. At this point
functions needed for demonstrating the concept of this thesis
are fully implemented by TPM Emulator. Missing functions
besides are perpetually added.

TPM Emulator furthermore provides an entire implemen-
tation of a TCG Device Driver Library (TDDL) allowing
applications to pass commands to the emulated TPM. It
implements three different components:

1) tpmd: a user-space daemon implementing a TPM with
almost all functions, components and mechanisms spec-
ified by the [TCG06]

2) tddl: a device driver library for Unix acting as generic
interface for accessing the emulated TPM

3) tpmd dev: a kernel module simulating a physical TPM
by providing the character device /dev/tpm forward-
ing all commands to the user-space daemon tpmd

Applications may access the emulated TPM by either pass-
ing commands directly to the user-space daemon (tpmd) or
by handing commands over to the device driver library (tddl)
or the kernel module (tpmd dev). TPM Emulator thus acts
transparently for applications providing realistic emulation of
a physical present TPM device.

Unfortunately TPM Emulator won’t operate before being
loaded by the operating system hence ignoring the important
boot process of a system. By omitting this part of the boot
chain, the Chain of Trust is broken as trust has to anchor in
a component being initially trusted. This is put into practice
by basing trust on hardware and a BIOS extension that is
loaded and executed right before any other software may com-
promise the system. TPM Emulator as an emulator executed
by the operating system itself can’t establish such a strong
Chain of Trust because the operating system can’t reliably be
determined as trusted system. To overcome this issue and to
demonstrate the abilities of a trusted system implementing a
Trusted Boot Process, the emulated TPM is passed to a virtual
machine thus becoming a physical device for the underlying
system.

B. Virtualization of a TPM-equipped System

QEMU [Bel08] was used to virtualize a system fully
equipped with a TPM device. In order to actually be able
to pass a TPM device to QEMU we needed to modify it by
applying a patch [Ble07] to the current version of QEMU



0.9.1. This patch allows QEMU to connect to a TPM via UNIX
socket just like the one provided by TPM Emulator’s tpmd.

To furthermore allow the virtualized system (we chose a
standard Debian Etch distribution) we configured the ker-
nel to support TPM devices (CONFIG_TCG_TPM = y and
CONFIG_TCG_ATMEL = y). Additionally we enabled IMA,
an implementation of the principle of Integrity Measurement
for Linux operating systems that was introduced by IBM
Secure Systems Department (CONFIG_IMA_MEASURE = y
and CONFIG_IMA_MEASURE_PCR_IDX = 10). Integrity
Measurement enables measurement and logging of executed
software thus representing the operating system’s mechanism
for extending the Chain of Trust. Each system process and
program is being measured before execution, added to PCR-
10 and additionally logged to the SML.

Building on that it is possible to implement protocols for
AIK Certification and Remote Attestation. We set up an infras-
tructure of several QEMU virtualized TPM-equipped clients
inside a virtual network, which allowed us to demonstrate
a complete client/server infrastructure of trusted platforms,
trusted third parties certifying TP’s AIKs and external parties
attesting TP’s system integrity.

C. Implementation of a client/server infrastructure

In order to pass TPM commands to the TPM in a convenient
high-level way, we developed a framework based on jTSS
[IAI08] in Java. jTSS is a Trusted Software Stack as defined
by the TCG [TCG06]. Written in Java, jTSS is developed at
IAIK Graz focusing on implementing a fully TCG-compliant
Trusted Software Stack. One main feature is the ability to
develop coexisting C/C++ and Java applications on a TrouSerS
[Tro06] based system by letting Java applications use jTSS
Wrapper, a Java wrapper for TrouSerS. It is concurrently
updated and builds the base for the demonstration framework
used in this work.

Our demonstration framework is able to create AIKs that
can easily be certified by an implementation of a Privacy
CA acting as TTP. This PCA is also part of our framework.
According to [GR06] there is a serious security weakness
in the AIK Certification process defined by the TCG. We
thus implemented this process as proposed in [GR06] by
inserting a handshake in the protocol. This ensures that the
PCA communicates with the TPM that generated the submitted
AIK. This prevents attackers from requesting credentials for
arbitrary RSA keys from the PCA. This can easily be done by
submitting intercepted data (public key of an EK and several
credentials) to the PCA, which thereupon issues a certificate
due to the false impression of actually communicating with
a TPM. Even if the attacker won’t be able to decrypt the
delivered credential due to it being encrypted for the TPM
owning the EK submitted, it allows for severe DoS attacks on
the PCA.

We additionally implemented the Remote Attestation proto-
col as defined by the TCG. An instantiation of a Remote Attes-
tation Server waits for clients to send a Stored Measurement
Log together with PCR-10 signed by the AIK certified by the

PCA in the previous step. The signature is thereupon verified
by the server and the PCR-10 is re-computed using the given
SML and a software implementation of the TPM_EXTEND
command. If both PCR values, the one submitted and the one
re-computed, are equal, the submitted SML has not been mod-
ified. The SML is then checked against a database of hashes
for programs known to be trusted. If the SML contains any
hash unknown to the server, attestation fails. This ensures that
- until the moment of attestation - only trusted software was
run on the TPM client. Modified software, malware or even
viruses or trojans that would result in unpredictable system
behavior thus can be detect. After successful attestation, the
client receives an Attestation Certificate. This certificate can
then be used to authorize against another service provider.

To further improve the framework and implement the con-
cept presented in the following section, we added high-level
access to more TPM functions like binding, sealing, creating
keys and certifying them.

Unfortunately we were not able to access the emulated TPM
device through the QEMU BIOS. This breaks the previously
mentioned Chain of Trust, preventing the system to base
trust in the CRTM. As soon as QEMU BIOS supports TPM
functionalities, we will be able to establish the Chain of Trust
from the very beginning of a system’s boot-up process and
thus anchor trust again on hardware.

IV. CONCEPT

We will examine three different security aspects in our
concept: a) device and content integrity, b) customer privacy
and c) copyright protection.

A. Device and Content Integrity

As the Set-Top-Boxes are being hand over to customers,
we have to ensure, that these devices operate in an unaltered
trusted state. We establish device integrity using Trusted
Computing concepts. TPM-Devices acting as a hardware trust
anchor provide Remote Attestation, that reliably attests a
devices’ system state. Modifications of the devices’ software
and/or configuration will therefore be detected and state such
devices being untrusted.

Each requesting device in the P2P network will have to
prove itself as trusted, otherwise it will not receive any
response. Remote Attestation Servers will receive TPM-signed
system states from each device, check them against a set of
system states being known as trusted and issue a certificate.
These certificates will be valid for an arbitrary amount of time
and are being requested and verified by each communication
partner before sharing any content over the P2P network.
This automatically ensures content integrity as only content
intended by the content-provider is distributed over the P2P
network.

B. Customer Privacy

Another issue to face is customer privacy. Serving as secu-
rity anchor, each TPM-Device contains one global unique key
pair for public-key cryptography called Endorsement Key. As



Fig. 1. Data Flow for retrieving videos

the before mentioned attestation certificate belongs to such a
key-pair, it is possible to trace and track consumers’ behaviors
shortening the customers’ privacy. To prevent this, we will
make use of Attestation Identity Keys providing pseudonymity
to some degree.

AIKs are derived from the EK with the private portion only
available to the TPM, thus establishing a security chain with
the TPM still being the anchor of trust. These key-pairs will be
created periodically and are being used for Remote Attestation.

C. Copyright Protection

To protect copyrighted material from theft in a customer-
friendly manner, we will make use of client-based digital
watermarking methods. This reduces load on the provider side
and balances it towards each Set-Top-Box participating in the
media sharing process via P2P. Since media is watermarked on
the client side after transmission over P2P, unmarked content is
shared and thus has to be strongly encrypted using one unique
key per shared medium before distribution.

This key and a customer-specific set of watermark informa-
tion is cryptographically bound and transferred to each Set-
Top-Box individually. Binding data is implemented using the
TPM provided bind operation. This ensures that bound data
can only be decrypted by and inside the TPM. Malicious
users getting hold of both the encrypted content and the
bound key/watermark information thus are prevented from
getting access to unmarked content and watermark parameters.
This on the one hand protects media from being stolen in
an unmarked state and on the other hand prevents malicious
users from wrongly accusing the victim of theft of copyright
violation.

V. TRUSTED WATERMARKS

This section briefly describes the implementation of the
concept illustrated in the preceding section.

A. Protocol Flow
As figure 1 shows, the retrieval of media consists of three

processes along an initial phase and one process successively
performed in a repeated phase.

a) AIK-Certification: After the customer chooses a me-
dia to be streamed, an AIK is being created inside the Set-Top-
Box and requested to be certified by the Privacy CA (PCA).
The TSTB therefore sends the public portion of the AIK signed
with the EK together with several credentials constituting the
TSTB’s TCG-conformance to the PCA. There a random nonce
is being generated, exclusively encrypted for the TPM (using
the public part of the EK) and sent back to the client. The
nonce is decrypted on the client side and sent back to the PCA.
Only after successful verification of the nonce, the certification
process is being started on the server side. This handshake
modification [GR06] of the protocol specified by the TCG
[TCG06] ensures that the PCA is communicating with the
TPM that initially signed the AIK. After that the certification
is encrypted using the public key of the EK and sent back to
the client where it is decrypted and stored for further usage.

b) Remote-Attestation: In the next step the TSTB is
being attested to be unmodified. Therefore PCR-10 is signed
by the TPM’s EK and sent to the RAserver together with
the SML. There it is matched against a database of hashes
for programs known to be trusted. If the SML contains any
hash unknown to the RAserver and thus untrusted, the client
receives no attestation hence ensuring the integrity of each
TSTB participating in the P2P media sharing. In addition
the PCR-10 is re-computed using the chronological history of
measured programs in the SML and a software implementation
of the TPM_EXTEND command. If both values appear to be
equal the SML proved to be untampered and the TSTB is
regarded trusted. An attestation certificate is being sent to the
client, where it is stored for further usage. This certificate is
only valid for a short period of time, in order to narrow the
time an attacker is given to unnoticeable modify the TSTB.
This is one major issue with Remote-Attestation, as the means
of measurement provided by Trusted Computing only allow to
attest a system’s state at a certain time. It is impossible to assert
a system to stay in the attested state, so limiting an attestation
certificate’s validity time-frame is the only way to lessen the
impact of attacks.

c) Peer-List-Retrieval: Now that the TSTB is success-
fully attested, it is granted to receive a list of peers sharing the
requested media. It therefore has to provide a valid attestation
certificate to the Vserver that, after successful validation of the
certificate, creates and sends a random nonce to the client. This
nonce is incorporated in the process of creating a certified key
using the TPM_CertifyKey command implemented by our
demonstration framework. As AIKs are limited to be only used
for signing, additional encryption keys have to be generated.
These encryption keys can furthermore be certified, i.e. signed
by the AIK. The result of the CertifyKey process is sent to
the Vserver to be checked for a valid signature and the nonce
provided in the previous step. After successful validation,
an encrypted data blob containing several parameters for the



subsequent sharing process is sent to the client. It is bound to
the TPM by encrypting it with the certified key and thus can
only be decrypted inside the TPM. The data blob contains
an AES-Seed, a Watermark-Seed, a list of peers and the
information to be embedded into the shared media.
Using both seeds, keys for a) decrypting the shared media and
b) basing the watermark process on can be generated. As all
data is bound to the TPM and the TSTB is in a trustworthy
state, there is no way for an attacker to gain access to it.

d) Video-Chunk-Retrieval: In the last repetitive step the
actual media is shared among all peers. After successful
retrieval of a video chunk, it is decrypted using the AES-key
(that was created using the submitted AES-Seed) and marked
with the corresponding watermark information based on the
watermarking algorithm illustrated in the following section.

B. Digital Watermarking Algorithm

In this section we will briefly depict the Digital Water-
marking Algorithm that was implemented to demonstrate the
concept of this paper. The algorithm developed for this paper
is more of a conceptual manner since it only serves for
demonstration purposed. It thus lacks of efficiency and is very
susceptible to attacks rendering it useless for being adopted
outside a conceptual scope.

Fig. 2. Generation of a Fridrich Pattern

For simplicity reasons we decided to implement a water-
marking algorithm for video content that is based on image
watermarking. We therefore chose the MJPEG video format
for our purposes, as it consists of full JPEG images for each
movie frame thus representing a modern flip-book. To parse,
manipulate and save MJPEG video files as well as JPEG im-
ages, we incorporated Sun’s Java Media Framework [Sun99].
We implemented an image watermarking algorithm introduced
by J. Fridrich [Fri97] and further developed by S. Thiemert
[Thi02]. This algorithm applies 8x8 low-frequency patterns to
the luminance values of an image. Two of those patterns (one
for embedding a 0 and another one for embedding a 1) P0

and P1 are generated using a process of different filtering and
smoothing algorithms. This results in low-frequency patterns
with low perceptibility (see figure 2).

In the following these patterns are converted to their
frequency-domain representation by using a 2D discrete cosine
transform (see figure 3) and applied to every single DCT-
Block of an image/video-frame. To embed a bit-string into
one frame, it is applied bit for bit in a sequential order to

Fx,y =
2 · C(x) · C(y)

N
·

N−1∑
i=0

N−1∑
j=0

fi,j ·

cos
(

(2i+ 1) · x · π
2 ·N

)
· cos

(
(2j + 1) · y · π

2 ·N

) (2)

C(n) =
{ 1√

2
, n = 0

1 , n 6= 0
(3)

Fig. 3. Discrete Cosine Transform (DCT)

each DCT-Block of the frame. In order to improve impercep-
tibility of the embedded watermark, each block is analyzed
using a so-called Smooth Edge Detection (SED) algorithm.
This algorithm returns a good estimate of how smooth or
edgy a block is. Smooth blocks consisting of mainly low-
frequent parts, are ignored for the embedding process, as they
would severely decrease imperceptibility of the watermark.
Furthermore we customized the embedding algorithm to be
only applied starting from a specific DCT coefficient. These
are ordered in ZigZagOrdering as shown in figure 4. By only
applying coefficients of the upper regions one can improve
preserved image quality with degrading watermark robustness
at the same time.

Fig. 4. ZigZag ordering

To furthermore embed an information into a MJPEG video,
the information is split up into parts of 3 bits. These 3 bits are
applied to one frame providing increased redundancy inside
each of them. The 3-bit slices are randomly distributed over
all video frames. In order to be able to recompose those slices
in the readout-process, they are furthermore numbered with a
5-bit sequence number. The resulting 8-bit bit-string is then
padded with a CRC-8 checksum to allow for verification of a
successful read-out. This 16-bit bit-string is finally applied to
one frame.

To read-out an embedded information from a watermarked
video, each frame has to be inspected. To detect embedded
bits, P0 and P1 are re-created using the process in figure 2.
Both patterns are then cross correlated (see figure 5) against
the blocks in the marked frame. The pattern resulting in a



Cor(b, p) =

∑g
i=f bi · pi√∑g

i=f b
2
i ·

∑g
i=f p

2
i

(4)

f = index to start from (ZigZag order) (5)

g = dimension2 − 1 (6)

Fig. 5. Cross Correlation

higher correlation factor is most likely to be embedded into
this block. Again we customized the cross correlation equation
to be started from a given index in ZigZag ordering. After
reading out each bit/block of a frame, all read bits are averaged
for their position in the 16-bit bit-string (due to redundancy of
each bit inside the frame). The result is then verified against the
CRC-8 checksum contained in the last 8 bits. By successively
reading out every frame of the video, it is possible to re-
assemble the information that was initially embedded into the
video.

VI. CONCLUSION

We have shown a solution to improve media distribu-
tion by rerouting server load towards clients participating in
the sharing of media. This reduces costs for powerful but
expensive server infrastructures. We furthermore enhanced
copyright protection of media by providing the customer
with nonrestrictive copyrighted material that is also usable on
other devices. In addition we could also implement means to
trustworthy verify the integrity of a platform for the purpose
of banning manipulated devices from sharing media. This
prevents malicious customers from modifying their devices in
order to gain access to unprotected media or even encryption
keys or watermark parameters.

Risks that emerge from outsourcing the process of digital
watermarking onto the customer’s devices are limited or
even eliminated by involving Trusted Computing technology.
Moreover the so-called analog-hole - a typical exploit to
bypass copyright protection - could be closed to some degree.
This exploit uses DAD (digital-analog-digital) conversion of
copyrighted media in order to remove copyright protection.
As several watermarking algorithms provide good robustness
against such attacks, the copyright protection presented in this
paper is less prone to this exploit.

Future research will have to examine appropriate water-
marking algorithms to fulfill requirements towards robustness,
perceptibility and capacity. Shifting some work load from the
clients to network load, novel digital watermarking techniques
like Watermark Containers [WHS08] may be of interest. This
concept presented by M. Steinebach, E. Hauer and P. Wolf
introduces server prepared containers for media that is to
be watermarked. These containers are encrypted in a way,
that decrypting them using a specific key results in custom
watermarked media. Providers thus are able to share this global

container via P2P and deploy customer specific decryption
keys. By decrypting the container with its specific key, a
customer thus obtains media that is specifically watermarked.

ACKNOWLEDGMENT

This work was partially supported by the NanoDataCenters
EU FP7 project.

REFERENCES

[Bel08] Fabrice Bellard. QEMU. 2008.
[Ble07] T. Bleher. Mailinglist [qemu-devel]: [PATCH] Add TPM support.

2007.
[Fri97] J. Fridrich. Methods for data hiding. 1997.
[GR06] S. Gürgens and C. Rudolph. AIK certification. 2006.
[HSH08] K. Hall, R. Sailer, and S. Hallyn. Linux-IMA: Integrity Measure-

ment Architecture. 2008.
[IAI08] IAIK. Trusted Computing for the Java(tm) Platform. 2008.
[Nan08] NanoDataCenters. Results - Security Experimentation Environ-

ment. 2008.
[Str04] M. Strasser. A Software-based TPM Emulator for Linux. 2004.
[Sun99] Sun. Java Media Framework API Guide. 1999.
[TCG06] TCG. TCG Software Stack (TSS) Specification Version 1.2 Level.

2006.
[Thi02] S. Thiemert. Werkzeuge zur Qualitätsevaluierung und Vorschläge

zur Optimierung von MPEG-Video-Wasserzeichen. Diploma The-
sis, Hochschule Anhalt (FH), 2002.

[Tro06] TrouSerS. TrouSerS - The open-source TCG Software Stack. 2006.
[WHS08] P. Wolf, E. Hauer, and M. Steinebach. The Video Watermarking

Container - efficient real-time transaction watermarking. 2008.


